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Resumo: O principio bem conhecido da dualidade entre fungGes de
custo e produgéo afirma que algum conceito definido em termos de
uma fungdo de produgéo tem uma definigdo “dual”, em termos da
funcdo de custo associada e vice-versa. Nos estudamos a relagéo da
dualidade de duas formas: definimos vdrias nogbes de economias
internas de escala (em termos da fungdo de custo), para os niveis
iniciais e finais “( — )" de insumos, e encontramos a “dual” deles em
termos da respectiva fungdo de produgdo. Por exemplo, provamos
que o custo médio cresce indefinidamente quando o produto tende ao
infinito, se e somente se a fungdo de produgédo “f’ cresce ao infinito
mais lentamente do que qualiquer fungéo linear inclinada
positivamente. De outra forma, para uma tecnologia exibir economias
iniciais de escala é necessdrio e suficiente que “f’ seja “maiorizada”
por qualquer fungéo linear inclinada positivamente para todos os niveis
iniciais de insumos. Esses resultados levam-nos a descrever
exatamente todas as tecnologias que tém curvas de custo médio em
forma de “U". Monotonicidade estrita e continuidade da fung¢édo de
produgdo sdo as mais fortes suposi¢ées que nos fazemos. Problemas
desse tipo ndo podem ser resolvidos usando célculo ou 0 Lema de
Shepard, no que diz respeito & dualidade. A abordagem direta
desenvolvida neste trabalho néo requer diferenciabilidade ou
concavidade (convexidade).

Palavras-chave: Fungdo de Produgéo; Fungdo de Custo; Economias de
Escola; Teoria da Produgao.
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1 INTRODUCTION

Various production processes in an economy can be described using
a notion of a production function. A production function is a mathematical
relationship showing the maximum output that can be produced using given
inputs. We study only the case of a single-output technology; the number of
inputs in this Introduction will also be assumed to be one for simplicity. Thus,
a production function can be written as

y =f(x)

where;
y = output;
x =input (all variables are non-negative).

It only describes a purely physical ability of the production unit to transform
inputs into outputs.

One of the notions which make it more economically relevant is that
of a cost function. Given the input price “w” it shows the minimum cost of
producing, at least the given level of output “y” and is formally written as

c(y, w) = min{wx: f(x) 2 y}.

Mention that if “f” is continuous and monotonic; then in the one-input case the
cost function can be easily found

c(y, w) = wf'(x).

It is less obvious that under some restrictions on “f*, it can be
restored from its cost function. The way it can be restored depends on the
assumptions which include either differentiability or concavity of “f’. This
important result (due to Shephard) is called duality between production
functions and cost functions. More generally, the duality principle is
understood as follows: any concept defined in terms of the production
function has a “dual” definition in terms of the cost function and vice versa
(Varian, p.81).

In the Main Results section we study duality relationships of two
kinds. We define several notions of internal economies of scale for large and
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small inputs (in terms of the cost function) and find their duals in terms of the
respective production function.

For example, in THEOREM 1 we prove that the average cost
increases indefinitely as output goes to infinity, if and only if the production
function “f” grows at infinity slower than any positively sloped linear
function. On the other hand, one of the statements of THEOREM 2 says that
for a technology to exhibit increasing initial economies of scale, it is necessary
and sufficient that “f’ be majorized by any positively sloped linear function
for all small inputs. These results allow us to exactly describe in Theorem 3 all
technologies that have U-shaped average cost curves (for the intuition behind
this notion see, e.g., Varian, section 5.2.).

The basic intuition behind these results is simple: the faster grows the
productive capacity of the production unit, the slower is the growth of the
associated cost function. Under some very weak conditions, the properties of
the cost function for large (small) outputs are only affected by a behavior of
the production function for large (small, resp.) inputs. Exact quantitative
statements, however, are less easy to explain.

The questions we ask have trivial answers for the Cobb-Douglas and
some other production functions often used by economists. We try to obtain
general answers under restriction as weak as possible. Problems of this kind
cannot be solved using calculus or the Shephard’s duality result. The direct
approach developed in this paper does not require differentiability or
concavity (convexity). Strict monotonicity and coentinuity of the production
function are the strongest assumptions we make.

It turns out that functional inequalities are an appropriate way to
answer the questions under consideration. The linear function

Gx)=x+..+x, . (1.1
and the Leontief function
L (x) =min{ox,, .., 0 x }, 0, >0, (1.2)

arise on several occasions as characterizing “boundary” or limiting behavior of
production functions.

NOTATION: Throughout the paper, “R” denotes an Euclidean space
provided with the dot product
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(X,Y) = ixij"i
izl

and the corresponding norm

i - 3]

“R, =10, =)”, “Q” is a quadrant

{xeR x. 2r,i=1,..,n}, 120,
For vectors “w”, “v”, the inequality “w 2 v’ means that “w, 2 v,” for all “1”. The
notation “w > v is used when “w, > v,” for all “i”.

Theorems 1-3 have been proved by the author in his MS thesis
(Mynbaev). THEOREM 4 and most of the remarks have been added for this
publication.

2 MAIN RESULTS

First, we define various concepts of internal economies of scale in
terms of cost functions and show that they can be equivalently expressed in
terms of functional bounds on production functions. Then these results are
applied to U-shaped average cost curves and production functions exhibiting
increasing, constant, or decreasing retumns to scale.

DEFINITION 1: by a production function we mean any function “f”
which is defined and non-negative in “Q,” and vanishes at the origin. We call

it also a “physical production function” (PPF) when we want to emphasize
that it does not necessarily possess the following “monotonicity” property:

fx)zf(y), Vxzy=20. 2.1)
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If “f” is bounded on each set of the form “{x: ||x]| < N}, we say that “f” is

“locally” bounded. Remind that for a *strictly monotonic™ production function *“x
<y implies f(x) < f(y)".

REMARK 1: a production technology can be equivalently described in
terms of input requirement sets. A production function “f* generates
technology (a set of sets) “t = {T(y): y = 0}”, where the “input requirement

"

set

T(y) = {x: f(x) 2 y}

[ 1 L)

shows all input vectors that are capable of producing “y”. Conversely, if the set
“1” is given, then the corresponding production function can be found by

f(x} = sup{y: xe T(y)}.

It is useful to state properties of input requirement sets implied by our definition
of a production function:

T.1 - for some “y > 0 T(y)” may be empty (it happens if and only if
“£” is bounded);

T.2 - since “f” vanishes at the origin, we have “0e T(0)";

T.3 - for the same reason “0¢ T(y) if y > 0”. It is possible, however, that
“0 e T(y)” for some “y > (", because input requirement sets
are not required to be closed;

T.4 - if “f* is monotonic, then from “xe T(y)” and “x’ 2 x” it always follows
that “x” € T(y)". For a physical production function this property
may not hold;

[I )N

T.5 - input requirement sets are obviously non-increasing in “y™: if
“yf 2 y”, then “T(yf) cC T(y)'l'};

T.6 - the correspondence “t” is upper semicontinuous for a strictly
monotonic “f”, but may not be such for a physical or monotonic
production function;

T.7 - since “f” is finite everywhere in “Q,”, wehave 1 T{) = .
y>0
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Let “f” be a production function and
c(y, w) =inf{(w, x): f(x) 2y}, y20,w20

the associated cost function where

n
iw, xX) = 2 WX,
i=1l

is a dot product, If the input requirement set “T(y)"” is empty (for example, if “f”
is bounded,

fx)<M, VxeQ,

and “y > M”), then we assume by definition
c(y, w) = oo,

The average cost function “AC” is defined by
AC(y) = c(y, Wify.

REMARK 2: here we want to comment on properties of the cost
function implied by our definition of the production function:

C.1 - denote by “ R, ™ the extended half-axis [0, ec]. The cost function

is a function of variables “ye R ” and “weR] ” with values in “ R_"". Defining

“cly, w)” to be equal to “eo” for some “y” and “w” has a prohibitive
meaning: such “y” at such prices “w” cannot be produced at a finite cost and
therefore will not be produced,;

r

C.2 - monotonicity in factor prices: if “w” 2 w”, then
“cly, w) 2 cly, w™

C.3 - homogeneity of degree 1 in prices:
c(y, tw) = tc(y, w),V t > 0;

C.4 - concavity in prices:
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c(y,tw+ (1-t)w”) 2 te(y, w) +(1-t)c(y, w’), Vi e[0,1];

C.5 - let “y > 0” be fixed. If “c(y, w)” is finite for one “w > 0”, then
it is finite for all “w > 0", We shall need a quantitative version of this
statement. Let “w' > 0, w* > 0”. By definition of “c(y, w)”, for any “€ > ("
there exists “x = x(y, w', €)” such that

(w', x)Scly, w) +& f(x) 2 y.

Obviously,

2 1

WS — W
w? - wt, x) = Zml—li-w}xi < max
Wi i

wh /wy o~ 1wt x0.

Therefore,

c(y, WHEW, x)=(W, x) + (W -w',x) €

<c(y,w)+e+ max w?fwi - 1| (c(y, W) + £).

Since “g” can be chosen arbitrarily small, this tells us that
c(y, W) S A ey, W)

where
A, = Mw',w?) =1+ maxjw?/w! 1.
1

Thus, by symmetry:
A, ey, W) € ey, W) < A ey, W) 2.2)

It follows, in particular, that “c(y, w)” is continuous in “w > 0" because “A,, —

1” when “w’ 5> w';

C.6 - “c(y, w)” is monotonic in “y”: if “y’ 2z y”, then
“oly’, w) 2 cly, w)”. The cost function is not necessarily continuous in
output.
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In all equations in C.2 - C.6, if the smaller of the quantities compared is
“eo”, then the larger is t00. We would like to stress that under such general con-
ditions the duality result between cost and production functions may not hold.
Remind also that the correspondence between cost and production functions is
not one-to-one (see examples in Varian).

Denote

Hw) = inf{(w, x): Y x; 21},  How) = maxw; .

1
To prove THEOREM 1 below, we need a series of simple propositions:

1) The implication
in 21l=w x 2 minwizxi 2 minw,
i 1

shows that “h(w)” cannot be less than * minw,; ”. Combining this fact with the

implication

x,=1,%x=0,Vizj, =W x)=w, Ix,=1

we get:
hiw) = min w; (2.3)
2) For any “c, > 0,c, < y” we have:
inf{(w, x):c, XX +¢, 2y} = (2.4)
- o c -C
= inf {wy 2 — x}:z t x21p= Y 2 h(w);
G Y6 Y= ¢
3) If “f”is strictly monotonic, then
{(x:A(x) 2 f(y)} c (xQ,: x, 2y, for some “1"}
so that

812 Rev. econ. Nord. Fortleza v. 27, n 4, p. 805-831, out./dez. 1996



where

Thus:

[0

inf{w, x): flx) 2 fly)} 2

2 inf{w, x): x; 2 y; for some i} = min m,
i

mi = inf{w, X):x; 2 ¥;.,x320Vj=# 1=

= inf{z wiXxj¥wildg-yltwiy,sxi-y; 20x;20Vj# i}=

j=# i

wiy; tinf{lw, x:x 2 0} = wiy;.

inf{(w,x):f(x) 2 f(y)} 2 minw;y, 2 h(w) miny;; (2.5)

4} If “y =z cr”, where “c” and “r” are some positive constants, then:

inf{w, x): cninx; 2 y, minx; 2 r} = (2.6)

It

inf{Zwi(xi -—y/c}+y/c2wi: m.;'_m(xi -y /c 2 0} =
i i

=y/c:z:wjE +inf{{w, x): x 2 0} =y/c2wi.
i i

DEFINITION 2: we say that a production function “f” (or the

technology ““1”) exhibits “decreasing economies of scale” if

(DES) lim ACly, w) = o, Vw > 0,

y oo

“constant economies of scale” if both

i
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(CES") lim inf ACly, w} > 0, Vw > 0,

Y = oo
and

(CES") lim sup ACly, w) < oo, Yw > 0,

Yy o
hold, and “increasing economies of scale” if

(IES) lim ACly,w) = 0, Vw > 0.

Yy e

REMARK 3: to see if a technology exhibits some kind of economies
of scale defined above it is in fact sufficient to check a corresponding
condition just for one “w > 0”. Indeed, because of (2.2) conditions (DES)
through (IES) are equivalent to

(DES) Jw > 0 such that 1lim ACly, w) = oo,
Y =
(CES" Jw > 0 such that lim inf AC(y, w) > O,
y = e
(CES™) Jw > 0such that 1im sup ACly, w} < oo,
Y = o
(IES) Jw > 0 such that lim AC{, w) = 0,
y e

respectively. A similar remark is true with respect to initial economies of scale
introduced later in DEFINITION 3. We call this phenomenon a “crowd
principle”.

THEOREM 1I: let f be a “strictly monotonic production function”.
Then (DES) is true if and only if

(DES.1)

for any € € {0, 1) there exists C{ > 0 such that

fy S el x; +Cey, VYx 20
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(CES”") and (CES”) are equivalent to

(CES’.1)
there exists ¢ > 0 such that
fix) € cXxi+1), Vx 20,

and

(CES”.1)

there exists ¢ > 0 such that for some r > 0
fix) 2 eminx;, Vx € @,
1

respectively. Finally, the condition

(IES.1)
(for any € € (0,1 there exists r = rle) > 0 such that

!

f(x) 2 imin X, Vx € 0,
e i

is necessary and sufficient for (IES).

PROOF. if (DES.1) holds, then for any “y 2 2C(g)” we have “y/2 -
C(e) 20" and

{: fx) 2 v} C {x: € X xi + Cl&) 2 y}

so that (2.4) gives

cly, w) 2 inf{w, x}: € 2 x: + Cl&) 2 y)

1
1y LY
£ 2 2

- Cle) Yhw) 2 %"’—}

" vy, Yy 2 2CE).
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Hence
b hw)
lJ;m lff ACly, w) 2 Ae

and (DES) follows because “e > 0" can be chosen arbitrarily small.

Suppose that (DES.1) does not hold. Then there exists “g, > 0” such
that for any natural “N > 0" a vector “x" > 0” can be found such that

f(_XN)' e Eozxf + N,

Put

Then
Yy = =, £xY) > vy,

and by definition of infimum

vy, wh € (W, x™ € Hw) X xV

0
<
z

|
=z

A
"
=

Thus,

lim sup AClyy, w) £ 2w

N =0 €0
which contradicts (DES). It means that (DES) = (DES.1).
To deduce (CES") from (CES'".1), mention that (CES'.1) and (2.4) give

cly, w) 2 inf{(w, x): c(Z x; + 1) 2 y}
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Yy - C
C

—

hw) 2 %(E—}y, Yy 2 2c,
c

which implies (CES").

Conversely, suppose (CES'.1) is violated. Then for every natural “N"
there exists “X" such that

FixX™y > NE XY + 1)

Put

cyy W € W, x") < Hw) I xi = Hw) tyjf‘ -1 < ‘“H,-(JW)' Yy

Thus, (CES'") cannot be true. We have proved that (CES') is equivalent to
(CES'.1).

If (CES".1) holds, then use (2.6) to get
cly,w) € inf{lw, % : flx) 2y, x € Q} =
< inf{w, x): cminx; 2y, x € Q,} = Zzwi
i c
from which (CES") follows immediately.

Conversely, suppose (CES".1) is violated. Then for any “ee(0,1)”
there exists a sequence “{x"}” such that
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fix") < eminx¥, minx! — e 2.7
i

1

Consider two cases: a) suppose the sequence “{f(x")}” is bounded. Then from
(2.1) and (2.7) it follows that f is bounded and (CES”) is rejected trivially:

. AC(y,w) = o0, Vy > sup f(x);

b) now let “{f(x")}" be unbounded. Then using monotonicity we see that
y, = f(x"} = oo,
Further, (2.5) leads to a lower bound

clyy W) = inf{(w, ¥ : £X) 2 Flx,)} 2 Hw) min x! > -@glyw

which again allows us to reject (CES”).
From (IES.1) and (2.6) we have

cly, w) £ inf{lw, x: fix) 2 ¥y, x € Q,} <

: 1 . : r
= inf{w x): =minx;, 2 vy, min x; 2r}=Ewai,Vy2—,
£ i i £

so (IES.1) is sufficient for (IES).

To prove the necessity, suppose that (IES.1) is violated. Then there
exist “c > 0” and a sequence “{x"}” which satisfy

£x™ < ¢ min %Y, min x} - e,
2 B )

Consider two cases as above: a) If “{f(x")}” is a bounded sequence, then “f" is
bounded and we have DES instead of IES; b) If “{f(x")}” is unbounded, then.

YW=y = oo
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and using (2.5) we arrive at
clyy, w) 2 Hw)min x> i) Y
i c
which excludes (IES). The proof is complete.
REMARK 4:
a) the proof of the equivalences

(DES) < (DES.1), (CES") < (CES'.1)

does not use the monotonicity assumption so that they hold for physical
production functions;

b) (DES.1) means that “f” grows slower than any (positively sloped)

linear function. If “f* is locally bounded, then because of the
inequality

L < X. € «Jn
il Y, x: < <l

(DES.1) is equivalent to

. £{x)
lim —— = 0;
=< [l

¢) (CES’.1) states that “f” is majorized by a linear function (1.1) for all
inputs. If “f” is locally bounded, then (CES’.1) is equivalent to

. £(x)
Iim sup -—I < oo

o= [Ix

d) (CES”.1) allows to support “f" in some quadrant “Q,” by a Leontief
function (1.2). Define a function

1 1
h{X} = (_ ] _)-
X1 *n
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Using the equations

= —— . % )
min x; e R R b < JH e K

it is easy to show that (CES”.1) is equivalent to

lim inf f(xfjx)| > 0;
i) ~> 0

e} (IES.1) means that “f” grows in the north-east direction faster than
any Leontief function. (IES.1) is equivalent to

lim _f(0)a(0)]| = o

[#{x)]-0

f) In (DES.1) and (IES.1) we restrict values of “e to (0, 1)” just to stress
that zero is the point of interest.

We need a few more auxiliary propositions for the next theorem
which gives a similar description of the average cost behavior for infinitesimal
quantities of output.

5) The inequality
Hw) inf{¥ xi: £00 2 y} € oy, w) S Hw inf{Z xi: fi0 2 y}

leads to an equivalence

Liminf{¥ xi: £ 2 y} = 0 @ limely, w) = 0. (2.8)
y- y—
6) Let us prove that
inf{tw,x): fx) > 0) = lim c(y, w). (2.9)
y—+0

The quantity at the left-hand side does not exceed the limit at the right because
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{x: fix) > 0} o {x: fiIx) 2 vy}, Vy > 0.
The opposite inequality is also true because if “x™ is chosen in such a way that
w, x™) € inf{lw, 0: £ >0 ++, £fix% >0,
where “N” is natural, then with “y, = f(x')"

vy wh S w, xS inf{lw x): £x) >0 +3

kT

and the desired result follows by monotonicity of “c(y, w)” in “y™.

(2.9) directly gives the equivalence

limcly,w)>0=1=0 2.10)
in some neighborhood of “x =0".

Ty If “y <cr/n”, where “c” and 1™ are some positive constants, then

inf{Z x;: cminx; 2y, Z x; < r} = 2.11)
4

- inf{z[xi -£]+H_Y= m;n(xi _1) > 0} .
c c 1 C c

8) We want to mention one more useful fact although we do not need
it. Suppose “f”’ is monotonic and “c(y,, w) = 0" for some “y, > 0”. Then there
exists a sequence “{x"}” such that

w, x") = 0, £fxM 2 v, -
By monotonicity, “f(x) 2 y,, Vx> 0",

Conversely, if with some “y, > 0” we have “f(x) 2 y,, ¥V x > 0”,then
“c(y,w) =0, Vy <y,”. Thus, for a monotonic “f”
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dye: cly,wh =0, Vy € 0,y & inf £(x) > 0.

x>0

DEFINITION 3: a production function “f’ exhibits increasing “initial
economies of scale” if

(IIES) lim ACly, w} = oo, YVw>0,
y=0

“constant initial economies of scale” if simuitaneously

(CIES") lim ibnf ACly, w) > 0, Yw>0,
v
and
(CIES™) lim sup AC(ly, w) < oo, Vw>0,
y—0

hold, and “decreasing initial economies of scale” if

(DIES) lim AC(y, w) = 0, Yw > 0.
y=—0

Denote by “S.” the simplex “{x >0: Zx, <1}”.

THEOREM 2: let “f” be a strictly “monotonic production function”.
Then (IIES) is true if and only if

(LIES.1)

for any ¢ e (0, 1) there_ exists r = r{e) > 0 such that

flx) £ eXxi, V x € 5¢.

(CIES’) and (CIES”) are equivalent to
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(CIES".1)

there exist o, r > % such that

fix) S crxi, V x € Sr,

and

(CIES”.1)
there exist ¢, r > ® such that

f(x) 2 ¢ min x;, Vx; €8,

respectively. Finally, the condition

(FIES.1)
[for any € € {0,1) theré exists r = rig) > 0 such that

»

{
1

flx) 2 — min xy, V x € 5,
£ I

is necessary and sufficient for (DIES).
PROOF: when proving that (IIES.1) implies (IIES) we can assume that

1im cly,w) =0

y—+0

2.12)

because otherwise this limit is positive and (IIES) is trivially fulfilled. Then from

[} |

the equivalence (2.8) it follows that for all small *“y's

{x: f0) 2z vy}l g, # 4. (2.13)
For such “y"” we can use (IIES.1) to get

cly, w) 2 hw) inf{Y xi: f{x) 2 y} =
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= h(w)inf{z Xi: fx} 2y, x € 51.} >
> h(w)inf{in: EXxi 2y, XXxiSr}=>i—y.

(ITES) follows since “€ > 0” can be arbitrarily small.

Conversely, if (IIES.1) does not hold, then there exist “g, > 0” and a
sequence “{x"'}” such that

Xy > g, T x7, X - 0. Put

Yy = Ep 2 Jl(.1.M
Then “y, — 0" and

clyy . w) € w, X) £ Mym

£
so that (IIES) is not true.

Suppose, (CIES'.1) holds. As above, we can consider only the case (2.12)

[T} )

and hence use (2.13). For small enough “y
cly. w) 2 hw) inf{S xi: f9 2y, x € St} 2

> W inf{T xi: cZxi 2y, xe€ S} = }i(gly

which gives (CIES').

Conversely, if (CIES'.1) does not hold, then for any “ee{(0, 1)” there
exists a sequence “{x"}” such that

) > ZE RV, K 0
£

Put
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1
.VN=EEX¥*

Then
vy W) S w, X € HW I X} = eHW) vy
and (CIES’) does not hold.

Suppose (CIES".1) holds. Then “f’ cannot vanish in the
neighborhood of “x = 0” and (2.10) shows that we can use (2.8)*. Hence, if
“y" is small enough, we can apply (CIES".1) and (2.11) to estimate

cly. w) € Hw) inf{Z x;: f) 2y, x € 0.} < (2.14)
H
S Hiw) inf{ X;: cminx; 2 ¥, in < r} = 2 (W)y
i c

Thus, (CIES") is proved.

Assume that the opposite of (CIES".1) holds, that is for any
“g e (0, 1) there exists a sequence “{x"}” such that

fix") < eminxy, X' - 0

Denote “y, = f(x")". Then “y, ~» 0" and (2.5) implies (remind that “f” is strictly
monotonic)

Clyn.wh = inf{w, 2 : flx) 2 £ 12 Hwiminx® > B
1

9, @15)

which in turn gives the opposite of (CIES").

Finally, if (DIES.1) holds, then an argument similar to that which led to
(2.14) results in a bound

cly, w) € eEnHwy

* Strict monotonicity could also be used at this point but we would like to refer to this property
as seldom as possible.
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for small “y's”. Hence, (DIES) is true.

Conversely, if (DIES.1) is violated, then there exist “c > 0 and a
sequence “{x"}” which satisfy

N . N N
f(x')<cminXi, x” -0,
1

It allows us to prove the following analogue of (2.15):

W)
CU’NJ W) > %_-YNI' .YN -3 O-

Hence, (DIES) cannot be ttue.
Thus, we have proved THEOREM 2.
REMARK 5:
a) equivalences
(1[ES) & (IIES.1),(CIES") «=» (CIES' 1)
are valid for physical production functions;
b) (IIES.1) is egquivalent 10

f (x

i = 0;
o T

¢) (CIES".1) is equivalent to

llmSLlp—-— < o0

-0 i

d) (CIES’".1) is equivalent to
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lim inf fxfhx)] > 0%
-0
e) (DIES.1) is equivalent to
lim £ = oo,
fim Fofhi] = e
DEFINITION 4: an averdge cost curve “AC(y,w) =c(y,w)/y” is
called U-shaped if:

lim ACly, w) = lim AC(y, w) = e,

y—0 ¥ oo
Here “c(y, w)” denotes the total cost.
THEOREM 3. Let “f” be a “PPF”. So:
a) If it is a long-run production function (fixed costs “F = ("), then the
“AC” curve is U-shaped if and only if the following two conditions

hold:

Ve>0 3Ce)>0: fof£exi+CEe), ¥V x 20,

YVe>0 Jr=re)>0: fIX) £€xi, VX€E 5,.

b) If *f’ is a short-run production function, then the AC curve
“(F + cly, w)) / y”is U-shaped if and only if

Ve>o03cle>0: Fx)SeXxi+Ce, V x2 0.

This theorem is an immediate consequence of remarks 4 and 5. Note
that it is reasonable to assume that a short-run production function is bounded
in which case the “AC” curve is always U-shaped.

DEFINITION 5: “f” is said to exhibit increasing returns to scale, if*

" See REMARK 4 for the definition of the function “h”,
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f

f(tx)ztf(::c), Vie>l Vx20,
decreasing retums to scale, if?

fex) S tfo, V £ >1, V x 20,
and constant retumns to scale, if:

fitx) = tfix), V £ >0, V x 2 0*

We would like to relate these notions to the notions of economies of
scale. If “f” exhibits increasing returns to scale, then for “y’ > y” we have “t =
y'/y > 1" and:

cty’, w) 1
ya" r

]

’ 1, 1
infitw, x): £00 2 y') = = Anf L, X : Ef{t-:-:w} 2y} <

b
Zint(ew S 6& 2 y) = t = oy, w = S
4 t t y y

1A

This means that the average cost is non-increasing. Hence onty two kinds of be-
havior at zero are possible:

1im AClY, w) = oo or 0 < lim ACly, w) < . (2.16)
v =20 y—0

Likewise, only two kinds of behavior at infinity are possible:

0 <« 1lim AC(y, w) < .o or lim ACl,w) = 0. (2.17)

y—roo y =poo

Let us restrict the argument to the behavior at zero. Then if “f” is in addition
strictlty monotonic, by THEOREM 2 we have only two mutually excluding pos-
sibilities: “f* satisfies either (IIES.1) or (CIES'.1) + (CIES".1). This is not at all
obvious: in the definition of increasing returns to scale the values of ' are
compared to the values of the same “f”, while in (IIES.1), (CIES'.1), and
(CIES".1} “f” is compared to other functions.

* {see Varian, section 1.10).
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Combining each possibility at zero with each possibility at infinity,
we obtain four possible kinds of behavior each of which can be completely
characterized using theorems 1 and 2. The cases of constant and decreasing
retumns to scale are considered in a similar fashion. Thus we obtain the
following result (in which we do not distinguish between obvious and less
obvious).

THEOREM 4: suppose “f”’ is a strictly monotonic production function.
Then statements a) and b) are true:

a) if the technology exhibits increasing returns to scale, then only two
kinds (2.16) of behavior of the “AC” curve at zero are possible and
the production function *“f” satisfies only one of conditions

(ITIES.1) or (CIES’.1)+(CIES”.1)

for small inputs. Only two kinds (2.17) of behavior of the “AC” curve for large
outputs are possible and, respectively, the function “f” can satisfy only one of the
conditions

(CES".1)+(CES”.1) or (IES.1);

b) in the case of decreasing returns to scale, the “AC” curve can satisfy
only one of the following two conditions for small outputs

0 < 1lim AC(y, w) < o or lim AC{y,w) = 0
y=0 y=0

and only one of the two comresponding conditions in terms of “f”
(CIES".1)+(CIES”.1) or (DIES.1),
For large outputs, there are only two possibilities:

lim ACly, w) = o0 or 0 « lim ACy, w) < oo

e Y=
which are equivalent to

(DES.1) and (CES’.1)+(CES”.1)
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¢) If “f” exhibits constant returns to scale, then the average cost func-
tion is constant as a function of output and the production func-
tion satisfies the condition:

3 ¢, c, such that 0 < ¢; < ¢, < = and

c; minx; £ flx) < C2z Xz, Vx>0
§ 1

Abstract: A well-known duality principle between production and cost
functions states that any concept defined in terms of a production
function has a “dual” definition in terms of the associated cost
function and vice versa. We study duality relationships of two kinds.
Woe define several notions of internal economies of scale (in terms of
the cost function) for farge and smalf inputs and find their duals in
terms of the respective production function. For example, we prove
that the average cost increases indefinitely as output goes to infinity,
if and only if the production function “f" grows at infinity slower than
any positively sloped linear function. On the other hand, for a
technology to exhibit increasing initial economies of scale it is
necessary and sufficient that “F" be majorized by any positively
sloped linear function for all small inputs. These results allow us to
exactly describe all technologies that have U-shaped average cost
curves. Strict monctonicity and continuity of the production function
are the strongest assumptions we make. Problems of this kind
cannot be sclved using calculus or the Shephard's duality result. The
direct approach developed in this paper does nor require
differentiability or concavity (convexity).

Key Words: Production Function; Cost Function; Economies of
Scale; Production Theory.
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